Иррациональное число - definition. What is Иррациональное число
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Иррациональные числа

ИРРАЦИОНАЛЬНОЕ ЧИСЛО         
число, не являющееся рациональным, т. е. не могущее быть точно выраженным дробью m/n, где m и n - целые числа. Действительные иррациональные числа могут быть представлены бесконечными непериодическими десятичными дробями.
Иррациональное число         

число, не являющееся рациональным (т. е. целым или дробным). Действительные И. ч. могут быть представлены бесконечными непериодическими десятичными дробями; например, Существование иррациональных отношений (например, иррациональность отношения диагонали квадрата к его стороне) было известно ещё в древности. Иррациональность числа π была установлена немецким математиком И. Ламбертом (1766). Однако строгая теория И. ч. была построена только во 2-й половине 19 в. И. ч. разделяются на нерациональные алгебраические числа (См. Алгебраическое число) и трансцендентные числа (См. Трансцендентное число). См. также Число.

Иррациональное число         
Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби \frac{m}{n}, где m,n — целые числа, n \ne 0. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

ويكيبيديا

Иррациональное число

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби m n {\displaystyle {\frac {m}{n}}} , где m , n {\displaystyle m,n}  — целые числа, n 0 {\displaystyle n\neq 0} . Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Другими словами, множество иррациональных чисел есть разность I = R Q {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа 2 {\displaystyle {\sqrt {2}}} .

Иррациональными являются, среди прочих, отношение длины окружности к диаметру круга (число π), основание натурального логарифма e, золотое сечение φ, квадратный корень из двух. Все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.

Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа не счётны, а рациональные — счётны, отсюда следует, что почти все действительные числа иррациональны.

What is ИРРАЦИОНАЛЬНОЕ ЧИСЛО - definition